First Mid Term - 2025 (Class XII – Chemistry, Units 1 & 2)

Time: 90 min Max. Marks: 50

Section A $(10 \times 1 = 10 \text{ marks})$

Answer all questions. Choose the most appropriate option.

- 1. The mineral **dolomite** is best represented by
 - a) CaCO₃ b) CaSO₄·2H₂O c) CaMg(CO₃)₂ d) MgCO₃
- 2. In the Ellingham diagram, the slope of the line for $CO \rightarrow CO_2$ is negative because the reaction is
 - a) exothermic with $\Delta S > 0$ b) exothermic with $\Delta S < 0$ c) endothermic with $\Delta S > 0$ d) endothermic with $\Delta S < 0$
- 3. Cryolite is added to the Hall-Héroult cell primarily to
 - a) lower the density of molten Al b) increase electrical conductivity
 - c) lower the melting point of alumina d) remove silica gangue
- 4. During electrolytic refining of copper, the anode mud is rich in
 - a) Zn and Fe b) Ag and Au c) Pt and Pd d) Sn and Pb
- 5. Boron forms the volatile compound BCl₃ because
 - a) its B–Cl bonds are purely ionic b) B has an empty d-orbital
 - c) B is electron-deficient d) chlorine is less electronegative than boron
- 6. The compound with the formula (SiO₂)n in which every O atom is shared between two tetrahedra is
 - a) an orthosilicate b) a sheet silicate c) a three-dimensional or tecto-silicate d) a cyclic silicate
- 7. A linear chain silicone may be represented by

a)
$$-SiO_2$$
 b) $-Si(R)_2$ $-O$ $-Si(R)_2$ $-O$ c) $-Si$ $-O$ $-Si$ $-O$ $-Si$ (all SiR_3) d) $(-SiO_3$)n

- 8. Graphene differs from graphite because graphene
 - a) is electrically insulating b) is one atom thick c) contains sp³ carbon d) has only pentagons
- 9. The allotrope C₆₀ is nick-named "buckyball" because it resembles
 - a) a rugby ball b) a soccer ball c) a tennis ball d) a cricket ball
- 10. The mixture of equal volumes of CO and N₂ obtained by passing air over red-hot coke is called
 - a) water gas b) synthesis gas c) producer gas d) Mond gas

Section B $(7 \times 2 = 14 \text{ marks})$

Answer any five questions. Each question carries 2 marks.

- 11. Distinguish **roasting** from **calcination** with one balanced equation for each.
- 12. State two reasons why **CO** is a better reducing agent than carbon below 983 K.
- 13. Write two industrial uses of borax glass (NaBO₂).
- 14. Explain why AlCl₃ fumes in moist air.
- 15. What structural feature makes silicones excellent high-temperature lubricants?

- 16. Predict whether Mg can reduce Al₂O₃ at 1200 K. Briefly justify using thermodynamic reasoning (no diagram required).
- 17. A sample of **galena (PbS)** is contaminated with ZnS. Name the reagent that selectively depresses ZnS during froth-flotation and write the suppressing reaction.

Section C $(7 \times 3 = 21 \text{ marks})$

Answer any five questions. Each question carries 3 marks.

- 18. (a) Write the electrode reactions in the **Downs cell** for Na extraction.
 - (b) Give one reason each for adding (i) CaCl2 and (ii) graphite anode.
- 19. Describe the **zone-refining** principle and explain why it is particularly suitable for producing ultrapure Ge.
- 20. Draw a neat labelled sketch of the **Hall–Héroult cell**, indicating anode, cathode, electrolyte composition and temperature range.
- 21. Illustrate the formation of two **three-centre two-electron (3c-2e)** bonds in diborane with a simple orbital diagram.
- 22. Outline the steps involved in converting **colemanite** to borax, giving balanced equations.
- 23. Explain the **Fischer–Tropsch synthesis** of hydrocarbons from CO and H₂, writing two general equations.
- 24. Give three ways in which the structures of **diamond**, **graphite and graphene** differ, correlating each difference with a physical property.

Section D $(3 \times 5 = 15 \text{ marks})$

Answer one question from each internal choice.

25. a) Describe the complete extraction of **copper** from copper pyrites, including concentration, roasting, smelting, Bessemerisation and electrolytic refining.

OR

25. b) Using the Ellingham diagram concept, discuss the conditions under which **FeO** can be reduced by (i) C and (ii) CO. Support your discussion with suitable free-energy equations. 26. a) Explain the chemistry of **boric acid**: preparation from colemanite, structure (with hydrogen bonding), acidic behaviour in water and one major use.

OR

- 26. b) Classify silicates into **ortho-, pyro-, cyclic, chain (single & double), sheet and tecto-silicates** with one example and structural sketch for each class.
- 27. a) With equations, show how **alumina** is concentrated from bauxite by the **Baeyer's process** and subsequently leached and calcined in the **Hall process** before electrolysis.

OR

27. b) "Carbon monoxide is both a poison and a valuable industrial raw material." Discuss this statement under the headings (i) physiological effect, (ii) metal carbonyl formation, and (iii) water-gas shift equilibrium.